Search results for "nuclear tests of fundamental interactions"

showing 7 items of 7 documents

Correlating Schiff Moments in the Light Actinides with Octupole Moments

2018

We show that the measured intrinsic octupole moments of $^{220}$Rn, $^{224}$Ra, and $^{226}$Ra constrain the intrinsic Schiff moments of $^{225}$Ra$^{221}$Rn, $^{223}$Rn, $^{223}$Fr, $^{225}$Ra, and $^{229}$Pa. The result is a dramatically reduced uncertainty in intrinsic Schiff moments. Direct measurements of octupole moments in odd nuclei will reduce the uncertainty even more. The only significant source of nuclear-physics error in the laboratory Schiff moments will then be the intrinsic matrix elements of the time-reversal non-invariant interaction produced by CP-violating fundamental physics. Those matrix elements are also correlated with octupole moments, but with a larger systematic u…

INTRINSIC REFLECTION ASYMMETRYPARAMETRIZATIONnuclear many-body theoryODDNuclear TheoryNUCLEInuclear density functional theorySKYRME INTERACTIONFOS: Physical sciencesRA-225114 Physical sciencesnuclear structure and decays3100Nuclear Theory (nucl-th)FORCESydinfysiikkanuclear tests of fundamental interactions
researchProduct

Correlating Schiff Moments in the Light Actinides with Octupole Moments

2018

nuclear many-body theoryta114nuclear density functional theoryydinfysiikkanuclear structure and decaysnuclear tests of fundamental interactionsPhysical Review Letters
researchProduct

First-forbidden transitions in reactor antineutrino spectra

2019

© 2019 American Physical Society. We study the dominant forbidden transitions in the antineutrino spectra of the fission actinides from 4 MeV onward using the nuclear shell model. Through explicit calculation of the shape factor, we show the expected changes in cumulative electron and antineutrino spectra. Relative to the allowed approximation this results in a minor decrease of electron spectra above 4 MeV, whereas an increase of several percent is observed in antineutrino spectra. We show that forbidden transitions dominate the spectral flux for most of the experimentally accessible range. Based on the shell model calculations we attempt a parametrization of forbidden transitions and prop…

Spectral fluxFissionElectron01 natural sciencesSpectral lineydinreaktiot0103 physical sciencesfission010306 general physicsShape factorNuclear Experimentnuclear tests of fundamental interactionsPhysicsRange (particle radiation)ta114010308 nuclear & particles physicsNuclear shell modelneutriinotshell modelfissioelectroweak interactions in nuclear physicsbeta decayAtomic physicsydinfysiikkaParametrizationPhysical Review C
researchProduct

Glueball enhancement by color deconfinement

2007

5 pages, 4 figures.-- PACS nrs.: 14.80.-j; 24.80.+y; 25.75.Nq.-- ISI Article Identifier: 000245333000063.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-ph/0609219

Nuclear and High Energy PhysicsParticle physics[PACS] Nuclear tests of fundamental interactions and symmetriesNuclear Theory[PACS] Quark deconfinement quark-gluon plasma production and phase transitions in heavy-ion collisionsHigh Energy Physics::LatticeFOS: Physical sciencesDeconfinementQuantum chromodynamics (QCD)Nuclear Theory (nucl-th)Nuclear physicsHigh Energy Physics - Phenomenology (hep-ph)Color confinementNuclear ExperimentNuclear theoryQuantum chromodynamicsPhysicsQuark confinementGlueball[PACS] Other particles (including hypothetical)High Energy Physics::PhenomenologyFísicaHigh Energy Physics - PhenomenologyColor modelHeavy ion-nucleus reactions
researchProduct

Neutrinoless Double-Electron Capture

2020

Double-beta processes play a key role in the exploration of neutrino and weak interaction properties, and in the searches for effects beyond the Standard Model. During the last half century many attempts were undertaken to search for double-beta decay with emission of two electrons, especially for its neutrinoless mode ($0\nu2\beta^-$), the latter being still not observed. Double-electron capture (2EC) was not in focus so far because of its in general lower transition probability. However, the rate of neutrinoless double-electron capture ($0\nu2$EC) can experience a resonance enhancement by many orders of magnitude in case the initial and final states are energetically degenerate. In the re…

Particle physicsNuclear TheoryAtomic Physics (physics.atom-ph)Electron capturePhysics beyond the Standard ModelFOS: Physical sciencesdouble beta decayGeneral Physics and Astronomyhiukkasfysiikka7. Clean energy01 natural sciencesResonance (particle physics)neutrinoless double beta decayPhysics - Atomic PhysicsNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNuclear MatrixRoad mapNuclear Experiment (nucl-ex)010306 general physicsNuclear theoryNuclear Experimentnuclear tests of fundamental interactionsPhysics010308 nuclear & particles physicsBeta DecayBolometersHigh Energy Physics - PhenomenologyPräzisionsexperimente - Abteilung BlaumNeutrinoydinfysiikka
researchProduct

Analysis of light neutrino exchange and short-range mechanisms in 0νββ decay

2020

Neutrinoless double beta decay (0νββ) is a crucial test for lepton number violation. Observation of this process would have fundamental implications for neutrino physics, theories beyond the Standard Model and cosmology. Focusing on so-called short-range operators of 0νββ and their potential interplay with the standard light Majorana neutrino exchange, we present the first complete calculation of the relevant nuclear matrix elements, performed within the interacting boson model (IBM-2). Furthermore, we calculate the relevant phase space factors using exact Dirac electron wave functions, taking into account the finite nuclear size and screening by the electron cloud. The obtained numerical r…

electroweak interactions in nuclear physicsHigh Energy Physics::PhenomenologyHigh Energy Physics::Experimentsymmetrieshiukkasfysiikkaydinfysiikkanuclear structure and decaysneutrinoless double beta decaynuclear tests of fundamental interactions
researchProduct

Muon-electron lepton-flavor-violating transitions : Shell-model calculations of transitions in 27Al

2018

In this paper we present the results of large-scale shell-model calculations of muon-to-electron lepton-flavorviolating transitions for the case of the target nucleus 27Al. We extend the previous shell-model calculations, done in the sd model space, by including also the p orbitals in order to see whether the negative-parity states produce any significant effect in the conversion rate. The analysis of the results shows the dominance of coherent transitions mediated by isovector operators and going by the ground state of the target, with practically null influence of excited positive- or negative-parity states. peerReviewed

electroweak interactionelectroweak interactions in nuclear physicsnuclear fragmentationydinfysiikkalepton induced nuclear reactionsflavor changing neutral currentsnuclear tests of fundamental interactions
researchProduct